Structural and functional analyses of human cerebral cortex using a surface-based atlas.
نویسندگان
چکیده
We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.
منابع مشابه
Functional and structural mapping of human cerebral cortex: solutions are in the surfaces.
The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denomi...
متن کاملStructural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas
We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm (both hemispheres), ;70% of which is buried in sulci. By linking the Visible Man cerebru...
متن کاملSexual Dimorphism in Surface Anatomical Parameters of Human Cerebral Cortex in Different Lebes in Normal and Neurodegenerative Subjects: a Stereological and Macroscopical Study
Purpose: This study sought to determine sex differences in surface anatomical parameters (thickness and surface areas) of human cerebral cortex in different lobes of the left hemisphere in normal right-handed subjects and right-handed subjects suffering from Alzheimer and Parkinson's diseases. Materials and Methods: This cross-sectional descriptive study was performed on 72 normal human brains...
متن کاملA Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex.
This report describes a new electronic atlas of human cerebral cortex that provides a substrate for a wide variety of brain-mapping analyses. The Population-Average, Landmark- and Surface-based (PALS) atlas approach involves surface-based and volume-based representations of cortical shape, each available as population averages and as individual subject data. The specific PALS-B12 atlas introduc...
متن کاملComparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia
A major challenge in functional neuroimaging is to cope with individual variability in cortical structure and function. Most analyses of cortical function compensate for variability using affine or low-dimensional nonlinear volume-based registration (VBR) of individual subjects to an atlas, which does not explicitly take into account the geometry of cortical convolutions. A promising alternativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 18 شماره
صفحات -
تاریخ انتشار 1997